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Self-excited thermoacoustic instabilities or oscillations occur in con"ned
geometries and result from a feedback loop between the heat transferred to the
#uid from a heat source and the acoustics of the geometry. If the heat input is at
times of high pressure, a self-ampli"cation of acoustic #uctuations may lead to high
pressure amplitudes. The e!ect can be observed in a Rijke tube, a straight tube with
a heating element made from hot wires or gauze that provides the heat input. In the
presence of a gas #ow, pressure oscillations are excited at one of the tube's natural
frequencies. Two di!erent kinds of Rijke tubes are modelled by using a control
volume based "nite di!erence method to solve iteratively the unsteady
conservation equations for mass, momentum and energy. The obtained results are
in good agreement with experiments. Besides the general behaviour of the
oscillating system, non-linear e!ects are also accounted for by the simulations. The
non-linearities in the heat transferred to the #uid from the heat source were
investigated. These determine the limit cycle amplitudes of the self-excited
oscillations.
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1. INTRODUCTION

Self-excited thermoacoustic oscillations in con"ned geometries originate from an
unsteady interaction and a feedback loop between #ow, heat input, and the
acoustics of the system. Lord Rayleigh stated already in 1877 that oscillations are
most strongly excited if the #uctuations of the heat #ux are in phase with the
#uctuations of the pressure [1]. However, oscillations can also be obtained if the
phase shift between the oscillations of heat #ux and pressure is less than $903 [2].
From the onset of the oscillations, the amplitudes grow until they reach
a maximum, called the &&limit cycle''.

The energy supply for self-excited thermoacoustic oscillations can be provided by
di!erent ways of heat input, for example an exothermal chemical reaction in
a combustion chamber. Overviews of such self-excited combustion instabilities or
pulse combustion, are given in references [2}10]. The heat input can also originate
from other sources such as hot wires or hot gauzes in the #ow. An example for
thermoacoustic oscillations caused by the unsteady heat #ux from a hot gauze is the
Rijke tube [11]. It is a straight tube with the heated gauze placed inside the tube.
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Air #ows through the tube and heats up when passing the gauze. Depending on the
position of the gauze, its temperature, the acoustic boundary conditions of the tube
and the #ow velocity, pressure oscillations with amplitudes of several hundred Pa
at one of the tube's natural frequencies can be observed. Contributions to the Rijke
tube and related phenomena can be found, for example, in references [1, 12}19].

The limit cycle amplitude is mainly determined by non-linear e!ects and thus
cannot be predicted by linear theory. The non-linear e!ects in a Rijke tube have
been thoroughly investigated by Heckl in reference [20], where an empirical model
is also developed for the prediction of the limit cycle amplitudes. A non-linear
theory to predict the limit cycle of acoustic oscillations in combustion systems is
presented in a recent work by Dowling [21]. The method is based on the
assumption of a non-linear heat release rate of the #ame and can also be applied to
systems with other kinds of heat input. Analytical methods for the determination of
limit cycle amplitudes that take the involved non-linearities into account are also
given by Wicker et al. [22] and Margolis [23]. Various other important
contributions have been made concerning non-linear e!ects in the thermoacoustic
oscillations and the existence of limit cycles (see, for example, references [24}28]).

This paper presents the numerical simulation of non-linear self-excited
thermoacoustic oscillations in two di!erent types of a Rijke tube with
a state-of-the-art CFD code. The time-dependent evolution of the oscillations until
arriving at the limit cycle was modelled by solving the unsteady compressible
Navier}Stokes equations together with the conservation equations for mass and
energy and appropriate boundary conditions. These equations comprise all
relevant e!ects in#uencing the oscillations, such as acoustics, #ow, temperature
distribution and the distributed region of heat input. It has been shown by Dowling
[29] that all these parameters must be included in a model to describe
thermoacoustic oscillations adequately. The #ow was assumed to be
two-dimensional, axisymmetric and laminar.

2. GENERAL MODELLING FEATURES

All simulations were performed by using the general purpose CFD code Fluent
4.4.4' that employs a control volume based "nite di!erence method to solve the
unsteady conservation equations for mass, momentum and energy. These are as
follows: conservation of mass,
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conservation of energy,
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These equations and the equation of state for an ideal gas

p/o"(R/=)¹ (5)

comprise all important thermoacoustic e!ects which occur in the Rijke tube
(nomenclature given in Appendix A).

Equations (1)}(5) were solved iteratively for a laminar, two-dimensional, and
axisymmetric #ow with structured, body-"tted computational grids. The heating
element is designed as a series of heater bands with an assigned surface
temperature. Figure 1 shows one of the modelled heating elements together with an
example of a computational grid in the region of the element. The outer wall of the
tube is set to be adiabatic. A zero velocity boundary condition was used for all
surfaces.

Two di!erent kinds of Rijke tube were modelled, one with both ends open and
the other one having one end closed by a porous sintered metal plate. This plate
was assumed to produce an acoustically closed boundary condition.

3. SIMULATION OF A RIJKE TUBE WITH AN OPEN}OPEN BOUNDARY

The geometry of the tube is shown in Figure 1. The tube is 3 m long ("¸) and
0)1 m in diameter, the heating element is located 0)75 m ("¸/4) away from the inlet
cross-section. This type of Rijke tube has two acoustically open boundary
conditions. The pressure at 0)1 m outside of the inlet and outlet cross-section (see
Figure 1) was therefore assumed to be constant [30] and was set to p

0
"101 325 Pa

at the outlet and to p"p
0
#0)5 Pa at the inlet. Under steady state conditions this

pressure di!erence produces a gas #ow with a mean velocity of 0)36 m/s through
the tube at 293 K that decreases to 0)007 m/s when the limit cycle is reached.

The molecular weight=, the speci"c heat c
p
and the viscosity g of the #uid were

those of air at 273 K. The thermal conductivity was chosen ten times higher,
j"0)2410 W/(mK) in order to obtain a su$cient heat input from the heating
element even though only four heater bands were present in the model. This
enabled the use of a coarser computational grid and thus reduced the
computational e!ort. The surface temperature of the heating bands was set and
kept constant at 3000 K. Under steady conditions these assumptions lead to
a temperature rise of the #uid from 293 to 807 K.

The heat #ux QQ
i
from the heating band to a neighbouring #uid cell i is calculated

from equation (6) with ¹
surface

as the temperature of the heater surface, ¹
cell centre

as
the local #uid temperature in the centre of the #uid cell and A

surface
as the area of the

contact surface. Ds is the distance between the cell centre and the hot surface:
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Figure 1. Geometry of the open}open Rijke tube with pressure boundary conditions. The heating
element and the computational grid in the region of the element.
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The total heat #ux QQ from the heating element to the gas stream results from
a summation of all QQ

i
:

QQ "+
i

QQ
i
. (7)

If a small pressure disturbance (Dp"30 Pa) is imposed on the obtained steady
state solution the system becomes unstable and self-excited thermoacoustic
oscillations evolve. Figure 2 shows the calculated pressure at the location of the
heating element (x"0)75 m) after the onset of the oscillations and for the limit
cycle.

The frequency of the estimated oscillations of 76 Hz corresponds to the "rst
fundamental frequency of the heated open}open tube. The mode of the standing
wave is shown in Figure 3. It is observed that the mode is &&stretched'' downstream
of the heating element. This is due to the elevated temperature of 807 K in the hot
part of the tube which in turn causes a higher speed of sound and therefore a longer
wavelength of the standing acoustic wave.

The calculated pressure oscillations pJ and the oscillating axial #ow velocity u at
the location of the heating element are shown in Figure 4(a), for the limit cycle. It
can be seen that the velocity oscillations precede the pressure oscillations by about
903 in phase, as to be expected for the excited standing wave. The velocity
oscillations lead to an oscillating heat #ux QQ transferred to the #uid from the
heating element which is shown in Figure 4(b). Due to thermal inertia the
maximum heat #ux does not coincide with the maximum velocity but occurs with
a certain time lag [31]. In Figure 4(b) the calculated pressure oscillations are also
shown. It is observed that the maxima of the heat #ux and pressure oscillation are
close together (phase di!erence +353) thus meeting the requirement of the
Rayleigh criterion.



Figure 2. Evolution of self-excited pressure oscillations. Calculated pressure in the modelled
open}open Rijke tube versus time, at the location of the heating element.

Figure 3. Under limit cycle conditions: computed pressure mode in the open}open Rijke tube.
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Since the limit cycle amplitude of the velocity oscillation of 1)04 m/s is much
larger than the average convective #ow velocity of 0)12 m/s, it therefore produces
considerable back#ow (u(0) at the heating element, once per cycle (see Figure
4(a)). This e!ect causes the non-harmonic shape of the heat #ux oscillations in
Figure 4(b) and is of importance for the amplitude limitation of the self-excitation
process, as will be discussed later.

4. SIMULATION OF A RIJKE TUBE WITH A CLOSED}OPEN BOUNDARY
AND COMPARISON WITH THE EXPERIMENTAL WORK

The second Rijke tube is of the acoustically closed}open boundary type with the
heating element placed at x"1

2
¸. An arrangement of this kind was thoroughly

investigated experimentally by Kunz [32] who, instead of a tube, used a duct of
0)989 m length ("¸) and with a square cross-section of 0)028 m side length. The
electric heater element which was placed at x"0)495 m ("¸/2) consisted of 18
parallel #at wires (cross-section 0)2 mm]1)75 mm, total length 0)504 m). The
acoustically closed boundary condition was realized by a #at porous plate of



Figure 4. Calculated results for the open}open Rijke tube versus time for the limit cycle. (a) axial
#ow velocity u at the centre of the tube and pressure pJ , both at the position of the heating element;
(b) pressure pJ and total heat #ux QQ transferred from the heater wires to the #uid.
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sintered material with an air stream #owing through it, at a constant velocity of
0)15 m/s.

The rectangular duct was modelled by an axisymmetric tube with the same
cross-sectional area (diameter 0)0316 m). The parallel heater wires in the
experimental set-up of Kunz were replaced in the model by concentric rings of #at
wire with the same cross-section and total length. To obtain su$cient spatial
resolution in the vicinity of the thin heater wires (thickness 0)2 mm) a very "ne
computational grid was used in this region. The constant inlet #ow velocity of
0)15 m/s at the acoustically closed boundary condition agreed with that of the
experimental arrangement. The boundary condition at the acoustically open end
was set to a constant pressure at 0)032 m outside of the tube. In order to take into
account the in#uence of temperature on the physical properties of air, the speci"c
heat c

p
, the viscosity g and the thermal conductivity j were each modelled as

temperature dependent [33]. At 273)15 K the following values apply: c
p
"1006 J/

(kgK), g"1)724]10~5 kg/(m s) and j"0)0242 W/(mK).
In his experimental work Kunz obtained an average heat #ux of 54)5 W from the

heating element to the air. The same heat #ux was obtained in the simulation if the
surface temperature of the heater wires was set to 745 K. This leads to the same
temperature rise from 293 to 666 K (directly after the heating element) as in the
experiments. The wall of the tube was assumed to be adiabatic. This assumption was
not ful"lled by the experimental arrangement where wall heat losses were present.

Figure 5 shows the calculated pressure at the location of the heating element
during the phase of the developing oscillations and for the limit cycle. Self-excited
oscillations occur at a frequency of 297 Hz which is the frequency of the second
harmonic of the heated tube. Oscillations of the same harmonic were observed in
the experiments. The accompanying pressure mode is plotted in Figure 6. It is
a three-quarter wave with a pressure node at the acoustically open boundary
condition (x"¸) and a pressure antinode at the acoustically closed boundary
condition (x"0). Due to the increased speed of sound in the hot section of the tube
the mode is again stretched there.

Computed oscillations of axial #ow, pressure and heat #ux are shown in Figure
7 for the limit cycle. Figure 7(a) presents the axial velocity u in the centre of the tube



Figure 5. Evolution of self-excited pressure oscillations. Calculated pressure in the modelled
closed}open Rijke tube versus time, at the location of the heating element.

Figure 6. Calculated pressure mode in the closed}open Rijke tube under limit cycle conditions.
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and the pressure pJ , both at the position of the heating element. Figure 7(b) shows
pJ together with the total heat #ux QQ , which is transferred from the heater wires to
the air. At this position it is observed that the pressure oscillations in Figure 7(a) lag
the velocity oscillations by about 903 in phase and that the phase lag between the
oscillations of pressure and heat #ux in Figure 7(b) is about 253. This means that
the Rayleigh criterion is ful"lled as required. Figure 7(a) also exhibits a slight
back#ow (u(0) at the heating element, once per cycle.

It is remarkable that in theory and from experiment only oscillations of the
second harmonic are excited in the closed}open tube and not of the "rst harmonic,
which cannot be excited because for this harmonic the pressure oscillations would
precede the velocity oscillations at x"1

2
¸. Heat #ux oscillations would be induced

in an antiphase nature to the pressure oscillations. However, this is a stable
situation according to the Rayleigh criterion. No oscillations are possible.

In Table 1 calculated and measured quantities are compared. It is found that the
agreement for the oscillation frequencies and for the maximum values of the
pressure and velocity amplitudes is quite satisfactory. The deviations originate from
the fact, that the modelling assumptions did not quite match the experimental



Figure 7. Calculated results for the closed}open Rijke tube versus time for the limit cycle. (a) axial
#ow velocity u at the centre of the tube and pressure pJ , both at the position of the heating element;
(b) pressure pJ and total heat #ux QQ transferred from the heater wires to the air.

TABLE 1

Comparison between simulation and experimental data

Value Simulation Experiment

Temperature at inlet 293 K 293 K
3 mm after heating element 666 K 665 K

Frequency 297 Hz 269 Hz
Heat losses to walls 0 Unknown
Max. pressure amplitude 496 Pa (148 dB) 450 Pa (147 dB)
Max. velocity amplitude 1)78 m/s 1)4 m/s
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set-up. Instead of the adiabatic conditions as in the model, heat losses were present
in the experiment. Therefore, while moving to the exit cross-section of the tube, the
temperature of the hot air decreased considerably due to the wall heat losses. This
results in a lower speed of sound, with the e!ect that indeed the experimentally
determined frequencies should be lower than the calculated ones. The slight
overprediction of the amplitudes may be due to di!erences in the acoustic
boundary conditions of the model and the experiment. Dissipative energy losses
within the sintered metal plate at the air inlet of the experiment are not taken into
account by the model boundary condition. The initial experimental work was
performed in 1981; unfortunately, at present it is not known how to improve the
model.

5. NON-LINEARITIES AND AMPLITUDE LIMITATION

In agreement with the experimental work, the computations also predict a limit
cycle with constant amplitudes of pressure, velocity and heat #ux oscillations.
Heckl [20] has studied in detail the e!ects which lead to the amplitude limitation
and demonstrated that it is mainly caused by non-linearities in the heat #ux from
the heating element to the gas.



Figure 8. Frequency spectra of the calculated heat #ux QQI at di!erent times during the onset of
oscillations and for the limit cycle.
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This view is con"rmed by the simulations. On following the increase of
amplitudes from the onset of the oscillations, eventually a state is approached,
where for short periods of time during each cycle, negative #ow velocities are
obtained (Figure 7(a)), causing a back#ow of hot gas at the heating element. This
e!ect imposes non-linearities on the oscillating heat #ux with the result that higher
harmonics appear in the frequency spectrum. This can be seen in Figure 8, where
frequency spectra of the calculated heat #ux QQI are shown at t"0)40 and 0)50 s,
when amplitudes are still growing, and at t"1)01 s, when the limit cycle is reached.
The amplitudes are scaled relative to the 297 Hz component at limit cycle. One can
observe that components of higher harmonics (594 and 891 Hz) appear in the
spectrum of the heat #ux with growing amplitudes. These higher harmonics result
entirely from non-linear e!ects and act like an external excitation on the
corresponding higher harmonics of the pressure. This means that with increasing
amplitudes an increasing amount of energy is fed into the higher harmonics with
the e!ect that the energy fed into the 297 Hz oscillation is growing more slowly. The
limit cycle is reached when the energy fed into the 297 Hz mode equals the energy
losses due to viscous dissipation and radiation of sound.

Heckl [20] furthermore observed that the non-linearities in the heat #ux already
appeared when the velocity amplitudes uL at the position of the heating gauze



Figure 9. Calculated axial #ow velocity distribution over y at 1)25 mm upstream of the heating
element, while uL "0)7uN , and at the time during a cycle when the minimum velocity in the tube centre is
reached.
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amounted to only one third of the mean velocity uN . This also corresponds to our
simulation results where the non-linearities appear between uL +0)3 ) uN and
uL +0)5 ) uN with uL and uN taken in the tube centre (radial co-ordinate y"0). This
e!ect is explained by means of Figure 9, where the calculated axial #ow velocity
distribution is plotted versus y, at 1)25 mm upstream of the heating element. The
pro"le is shown for uL "0)7 ) uN and at the time during a cycle when the minimum
velocity in the tube centre is reached. It is seen that while this velocity minimum is
still positive, #ow reversal already takes place in the region between y+3)5 mm
and the tube wall, thus causing the non-linearities in the heat #ux.

6. CONCLUSIONS

Self-excited thermoacoustic oscillations in a Rijke tube, that result from an
interaction between the heat transferred to the #uid from hot wires and the
acoustics in the geometry, were simulated successfully by solving the unsteady
conservation equations for mass, momentum and energy together with the ideal gas
equation and the boundary conditions. The applied code, Fluent 4.4.4', is
a commercially available control volume based CFD code that uses a "nite
di!erence method to solve the system of partial di!erential equations. In agreement
with other work in the literature we "nd that self-excited oscillations are only to be
obtained if the Rayleigh criterion is ful"lled and that the limit cycle amplitude is
mainly determined by non-linearities in the heat #ux from the heating element to the
#ow. Good agreement was obtained between simulation and experimental results.
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APPENDIX A: NOMENCLATURE

Symbols

A area
c
p

speci"c heat
f frequency
¸ length
p pressure
QQ heat #ux
s distance
t time
¹ period (1/ f )
¹ temperature
u axial velocity
u
i

ith velocity component
= molecular weight
x axial co-ordinate
x
i

ith spatial co-ordinate
y radial co-ordinate
d Kronecker symbol
g dynamic viscosity
j thermal conductivity
o density
q
ij

viscous stress tensor
L partial derivative
H diameter

Superscripts

6 mean value
J oscillatory part
( amplitude
. (dot) time derivative

Subscripts

0 ambient state
i ith component or summation index
j jth component
k kth component
n nth harmonic
rel relative (normalized) quantity

Constants

R "8)31451 J/mol K universal gas constant
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